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Abstract

Soil organic carbon (SOC) has an essential role in controlling ecosystem functions associated with

soil physical, chemical and biological properties. Maintaining the SOC pool size in agroecosystems

is important to sustain food security, protect soil biodiversity and buffer environmental impacts.

The SOC pool is dynamic, with losses occurring due to CO2 mineralization and gains from

microbially mediated humification of organic substrates into stable C compounds. Bioenergy

production from lignocellulosic feedstock implies that greater amounts of plant residues will be

removed from agroecosystems and could deplete the SOC pool, based on empirical models and

experimental results from long-term field trials. In northern temperate regions, several manage-

ment practices are suggested to conserve the SOC pool, such as the application of biochar,

judicious use of organic and inorganic fertilizers, crop rotations that include high biomass pro-

ducing non-bioenergy crops or intercropping systems that combine perennial bioenergy crops

with other crops (annuals or trees). Moreover, new technologies such as genetically modified

(GM) bioenergy crops are recommended to enhance bioenergy production per unit energy input.

Those modifications include GM crops with higher resource-use efficiency (i.e., for water,

nutrients and light), GM crops with cellulase/ligninase enzyme systems for biofuel production and

GM crops with higher calorific values that release more energy during combustion.

Keywords: Genetically modified bioenergy crops, Crop rotation, Biochar, Tree-based intercropping, Soil

organic carbon, Humification.

Review Methodology: The data bases ISI Web of Science and Science Direct was searched for articles for this review.

Introduction

Global energy demand (424 Exajoules/year) is increasing

by an estimated 2.2% per year [1]. Approximately 1.86

million barrels per day of bioenergy were produced in

2012 [1], supplying approximately 10% of the world’s

energy demand, mainly for liquid fuels and household use,

e.g. for cooking [2]. In order to mitigate the climate

change effect associated with burning of fossil fuel, alter-

native measurements such as the use of renewable

resources for energy production is inevitable. The largest

source of renewable energy is the bioenergy and the

world supply of bioenergy is predicted to increase from

50 EJ today to 160 EJ in 2050, of which 100 EJ will be

available for generation of power and heat [2]. The Energy

Independence and Security Act of 2007 of United States

mandates the production of renewable fuels as 36 billion

US gallons by 2022, of which 16 billion US gallons ought

to be produced from lignocellulosic feedstock. As first-

generation bioenergy technology (i.e. using grains and

sugarcane and vegetable oils for bioenergy production)

compete with food, lignocellulosic biomass or second

generation feedstock (i.e. non-food components of plants,

from agriculture, forestry and industrial sources) are
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preferred for bioenergy production, which also have the

potential to provide benefits such as making use of

abandoned lands and consuming waste residues [3].

Although second generation bioenergy production is

considered a better social and environmental option than

first-generation bioenergy production, the major con-

straint at this point is the lack of availability of low-cost

feedstocks. Until large tracts of dedicated bioenergy crops

such as perennial grasses and trees are planted, bioenergy

production facilities will rely on crop residues, specifically

the non-food components (i.e. stems and leaves) as

feedstock. However, the removal of non-food residues

from agricultural fields reduces the amount of residue C

that is returned to the soil, which can cause a drastic

reduction in the soil organic carbon (SOC) pool size

and associated ecosystem services [4, 5]. For example,

Blanco-Canqui and Lal [6] reported that removal of 50%

of the corn stover residues from a long-term (>8 years)

no-tillage corn agroecosystem in Ohio during a 2.5-year

period reduced the SOC pool by 1.63Mg/ha in an

erosion-prone soil.

Conservation of the SOC pool is important because it

controls soil physical, chemical and biological properties

that contribute to soil health and ecological functions.

Among the soil properties related to the SOC content

are soil structure (aggregation), porosity, pH, water and

nutrient retention, retention and detoxification of pollu-

tants, carbon sequestration and emission of greenhouse

gases (i.e. carbon dioxide, nitrous oxide and methane),

and population size and diversity of soil organisms [e.g.

7–-9]. Globally, the SOC is as a reservoir for C seques-

tration, due to the fact that soils (to 1m depth) store

three times more C than is contained in terrestrial

vegetation or the atmosphere [10]. Worldwide, soils

contain about 1550 Pg C in the upper 1m layer, excluding

soil C reserves in permafrost soils and peatlands [see

11–13]. Due to the large size of the SOC pool, small

changes in this reservoir may have a large positive or

negative impact on the concentration of greenhouse gases

in atmosphere [14].

It is clear that SOC reserves need to be protected

globally, and there is a pressing need to do so in regions

with high bioenergy demand like northern temperate

regions of North America and Europe. In these northern

climates, energy is required for heating and transportation

by every segment of the population and targets for

renewable energy use need to be met now and in the

foreseeable future [15–17]. Sorda et al. [15] presented an

exhaustive overview of biofuel policies across the world

that encourage expansion of the global biofuel industry.

Assuming rapid growth and demand for bioenergy, which

could be deleterious to SOC pools if we rely upon non-

food crop residues as feedstock for bioenergy generation,

we discuss (1) the factors controlling SOC dynamics, (2)

describe agricultural residues and dedicated bioenergy

crops and (3) present management options to sustain or

improve SOC amount in bioenergy cropping system of

northern temperate regions. We will eventually need to

shift our bioenergy feedstock from non-food crop resi-

dues to dedicated bioenergy crops, which do not grow

very fast in this climate. The last section of the review will

discuss new technologies and production techniques to

boost the yield of bioenergy crops in northern temperate

regions.

Soil Organic Carbon: Nature and Quantity in

Cold-Temperate Regions

The SOC pool includes dead organic matter (OM) such as

fresh-fallen leaves, twigs, microbial byproducts and animal

tissues in varying states of decomposition [e.g. 18, 19].

Due to their close association with decomposing organic

matter and short generation time, living microorganisms

are also considered to be part of the SOC pool [20].

Chemical compounds commonly found in SOC include

acid-soluble polyphenolics, lignin monomers, lignin

dimers, n-alkanes, alkanoic acids, fatty acids, bacterial

hexosamines, proteins, glucosamine and saccharides

[10, 11, 20]. Various benzene compounds, alkyl-benzenes,

poly-aromatic compounds, toluene, phenanthrene, mono-

, di-, tri- and tetra-methylphenenthrine and alkyl-aromatic

compounds were also reported in soils of Bainsville,

Canada by Schnitzer and Monreal [20]. The functional

groups found in SOC, based on isotope NMR spectro-

scopy, are alkyl-C and O-alkyl groups, aldehydes, ketones

and alkenes [e.g. 11], while the elemental composition of

the C–C skeleton of SOC is generally covalently bound to

H, O, N and S [20].

Climate and ecosystem type also influence SOC com-

position. For instance, using pyrolysis – GC/MS tech-

nique, Vancampenhout et al. [21] observed that the

NaOH-extracted SOC from tropical forest, temperate

forest, tundra, taiga and steppe ecosystems possessed

different chemistry. The SOC from cold climates had

more long-chain alkanes and levosugars as compared to

N-compounds, whereas tropical SOC had larger quan-

tities of N-compounds relative to lignins and recalcitrant

fractions (i.e. aromatic and aliphatic compounds) were not

detected. The ratio of
P

levosugar:
P

N for temperate

coniferous and temperate broad-leaved forests ranged

from 0.36 to 3.48, with a ratio of 7.64 in taiga and

from 0.12 to 0.53 in tropical rain forests. The ratio ofP
lignins:

P
N for temperate coniferous and temperate

broad-leaved forests ranged from 0.65 to 4.21, for taiga

it was 5.25, and for tropical rain forests the ratio was

1.03–2.08.

Within a particular ecosystem, the amount of SOC

depends on land use and history of vegetation type

(Tables 1 and 2, Figures 1 and 2). Qi et al. [26] reported

that the change in vegetation from Stipa baicalensis steppe

to arable land (from 1953–2000) in Inner Mongolia,

China caused a 28.2% reduction in SOC amount in the top

0–10 cm depth, 26.8% in the 10–20 cm depth and 20.5%
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in the 20–30 cm depth (Table 2). Sun et al. [23] also found

that forest had a significantly (P< 0.05) greater amount of

SOC than grassland and shrubland (Table 2). Li et al. [19]

reported that the SOC stocks in top 30 cm depth of cold-

temperate forest ecosystems in Japan were 12–20 kg/m2

and were positively correlated with stand density,

aboveground biomass and mean tree height (P< 0.01–

0.05). Likewise, in a study with three temperate forest

types: coniferous mixed forest, coniferous broad-leaved

mixed forest and broad-leaved mixed forest in north-

eastern China, Wei et al. [25] reported that forest stands

that were older than 51 years had significantly (P< 0.05)

more organic carbon than younger forest stands (Fig-

ure 1).

Sandy soils typically have lower SOC content than

clayey soils, due to greater physically protection of SOC

in association with clay minerals [27]. The SOC con-

centration generally declines with depth, as shown in

Figure 2, due to the fact that the C input to the SOC pool

comes largely from dead organic residues deposited on

the soil surface or within the topsoil layer, where fine

root biomass is concentrated and turns over on an

annual or semi-annual basis. Soil erosion redistributes

SOC across the landscape and may contribute up to

0.5–0.085Mg SOC/ha in various land-use types in cold-

temperate climate in Coshocton, Ohio [28], but erosion

constitutes a relatively minor input to the SOC pool in

most temperate ecosystems [28, 29]. Lal [30] reported

that the global amount of total C displaced by erosion may

be 4.0–6.0 Pg/year.

Factors Affecting Soil Organic Carbon Pool

Dead organic residue undergoes two major processes:

(1) it is metabolized as a C substrate by microorganisms

and is lost from the system as carbon dioxide (CO2) and

(2) it is transformed into humus, which is recalcitrant

to mineralization. The transformation to humus may be

achieved through biotic processes (e.g. microbial bypro-

ducts that are stabilized in organo-mineral complexes and

become physically or chemically resistant to further

decomposition sensu [10]) or abiotic processes, e.g. qui-

none reduction, adduction of amino acids to phenols,

reducing sugars etc. as documented by Scott et al. [31]

and Fukushima et al. [32].

Decomposition Leading to CO2 Loss from the

SOC Pool

The amount of CO2 released from decomposition of SOC

pool depends on biotic factors, litter type, environmental

conditions, soil texture and stand type.

Biotic controls

Soil microbial diversity influences decomposition as dif-

ferent microorganisms have different preferences and

efficiency for mineralizing a given organic substance [e.g.

33–37]. There is empirical evidence for a positive rela-

tionship of microbial diversity with catabolic and func-

tional diversity of microorganisms [38–43]. Soil microbial

responses depend upon the amount of plant and litter

biomass, plant and litter diversity, and the level of SOC in

the soil environment [38–43]. For example, Liu et al.

[40, 41] observed highly significant positive correlations

(on average P< 0.0001) of biomass, catabolic diversity,

catabolic activity and catabolic evenness of microorgan-

isms with the aboveground plant biomass, root biomass

and nitrogen:phosphorus ratio in soils of temperate

grassland and temperate steppe ecosystem in Inner

Mongolia, China. In another study, Thoms et al. [42] found

a positive relation of microbial diversity and total micro-

bial phospholipid fatty acid (as an indicator of microbial

biomass) with leaf litter diversity in temperate deciduous

forest in Thuringia, Central-Germany. Zhang et al. [43]

also found that the natural level of SOC was positively
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related to microbial biomass carbon and total bacterial,

actinomycetes and fungal PLFAs (Table 3).

The C use efficiency of microorganisms controls how

much organic C from substrates is converted into CO2,

where a higher C use efficiency means more C retained in

microbial cells. Moreover, the degree of influence of

microbial community structure and diversity on CO2

emission from decomposing C substrates is also related

to the level of SOC in the soil environment [e.g. 22, 33, 44].

For instance, Maire et al. [33] found a positive relationship

between the amount of SOC and microbial biomass,

microbial (richness of fungal and bacterial PLFA) and

faunal species richness, whereas the CO2-ATP ratio was

lower with greater SOC concentration. Despite the

greater level of SOC in a 15-year-old forest stand, Wang

et al. [44] found less heterotrophic respiration (3.90Mg/

ha/year) in the forest soil than in soil under shrubland

(4.29Mg/ha/year) in a temperate region of Inner Mongolia,

China (Table 1). Similarly, Gong et al. [45] found that old

forest stands had greater amounts of SOC but less

microbial soil respiration than young forest stands, despite

the greater microbial biomass carbon in old than young

forest stands in northern China. Birkhofer et al. [46] found

that the agricultural land in a cold-temperate region with

long-term organic wheat farming system had significantly

higher SOC concentration (15.5 g/kg organic C, P< 0.05)

than the conventional wheat farming system, which

received inorganic fertilizer (13.5 g/kg organic C). The

long-term organic wheat system also had �50% higher

MBC, �60% higher microbial biomass nitrogen, �27%

more total PLFA, 40% higher MBC:SOC ratio, and 43–

50% larger populations of nematodes, spiders and earth-

worms (PO0.05) than the conventional system. More-

over, during a 1 week of incubation of soil at optimum

laboratory conditions, they found 42% less microbial

respiration in the soil from the organic wheat system than

the inorganic wheat system (P< 0.001), suggesting higher

C use efficiency of microorganisms in the soils with

more SOC.

Soil fauna contribute to SOC mineralization directly, by

consuming and metabolizing decomposing organic matter,

and releasing CO2 as a byproduct of their metabolism.

Indirectly, soil fauna facilitate SOC decomposition by their

symbiotic gut microflora (bacteria and protists) that

degrade cellulose and hemicellulose efficiently [e.g. 47].

Moreover, soil macrofauna are responsible for translo-

cation of organic residues, which enhances microbial

activities in soil [e.g. 48], making habitat for other soil

fauna and microorganisms to invade their nests, burrows,

etc, [49–52], which enhances microbial activities in the

soil as new substrates are incorporated. In addition, the

soil restructuring of soil macrofauna (including aggregate

formation via there casts and pore creation with their

burrows) provides habitats for microorganisms and soil

micro- and meso-fauna to access those substrates. In a

5-week microcosm-based laboratory study under ele-

vated CO2 with four leaf litter types from trees in elevenT
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different combinations/treatments, with and without

the millipede species Glomeris marginata, Rouifed et al. [53]

reported that mass loss of litter in the presence

of G. marginata was �70–370 g/kg higher than the litter

without the presence of Glomeris (significant for five out

of eleven litter type combinations). In a microcosm

study with alder litter mixed with clay spoil, exposed in

a forest field of cold-temperate climate for 1 year,

Frouz [54] reported four times greater CO2 production

from microcosms that were accessible to macrofauna

than the control (microcosms not accessible to macro-

fauna).

Abiotic controls

Soil physicochemical characteristics. Soil temperature and

soil moisture are positively related to SOC decomposi-

tion [e.g. 24, 55–59]. Warming accelerates the proteolytic

enzyme activity of soils at moderate soil moisture con-

tents [60], indicating that the impact of soil temperature

on SOC mineralization is moisture dependent. Based on

radioactive 14C analysis, Frank et al [61] reported that the

turnover time of SOC of northern boreal forests, tundra

and deserts was 1277–2151 years, whereas upland and

bottomland tallgrass prairie (moister and comparatively

warmer than tundra and northern boreal forest) had

SOC turnover times of 158 and 260 years, respectively,

and the shortest SOC turnover time was 60 years for

tropical forests (warmer and moister than the other

biomes). This example illustrates how soil temperature

and moisture exert a fundamental control on decom-

position and turnover of the SOC pool, which is expected

to be affected at a global scale due to climate change. Soil

parent material and texture are the major determinants

of soil physical properties such as structure, hydrology,

gas diffusion and heat-transfer. These characteristics also

depend on the SOC content, which has a role in water

retention and promotes aggregation, which in return

increase aeration [e.g. 62] and may also participate in

regulation of soil temperature directly and indirectly by

affecting plant growth and the plant-associated microbial

community.

Soil chemical characteristics such as pH levels influence

the activity of soil biota responsible for SOC transfor-

mations. Soil pH was identified as an important controller

of decomposition in a review by Walse et al. [63]. Bac-

terial growth rates are more sensitive to low pH levels

than fungi growth rates due to the effect pH exerts on the

activity of extracellular enzymes and the metabolic func-

tions of cell (see also section ‘Biotic controls’). Bacteria

are known to decompose easily decomposable material

(e.g., cellulose is hydrolysed with cellulases that have an

optimal pH range of 5–8 [64–69], with no reduction in

their activity at pH 10, as reported by Dilek and Ozlem,

[70]. Fungi contribute more to the decomposition of

recalcitrant matter such as lignin with extracellular laccase

enzymes [optimum pH of 3–6 e.g. 71–75]. Soil pH also

influences the adherence of OM to mineral surfaces

and subsequently its decomposition rate. As pH increases,

hydroxylated surfaces become increasingly negatively

charged and thus more repulsive to negatively charged

OM [76, 77], causing organic molecules to remain in

soil solution where they are more susceptible to hydro-

lysis by extracellular enzymes. When residue inputs

exceed decomposition rates, resulting in net SOC accu-

mulation through organo-mineral complexes, pH buffering

and higher cation exchange capacity are expected

[78–80].

Chemistry of organic residue. The chemical nature of

organic residue is an important determinant of its influ-

ence on SOC dynamics. Readily available organic C has a

positive priming effect on both residue and SOC

decomposition [81–83]. Lignin, C:N ratio, lignin:N ratio

are important determinants of the mineralization of plant

residue and residual SOC [36, 38, 77]. Lignin provides

protection to plant residues against decomposition and

subsequent N mineralization [9,36]. Moreover, as the

level of SOC in the soil environment and soil aggregation

are positively related, as fragments of undecomposed

plant residues and complex polymers (i.e., lignin and cel-

lulose) are protected physically from biodegradation

within soil aggregates. This phenomenon is well explained

in Gul and Whalen [36], Blanco-Canqui and Lal, [84] and

Gul et al. [9].

Humification

Humification is the biological process of conversion of

organic matter into non-tissue colloidal heterogeneous

substance known as humus. It is the outcome of the

alteration of biologically derived organic substances into

chemically complex organic substances that resist further

biochemical degradation [78]. Humus is a recalcitrant

fraction of SOC and its turnover time ranges from dec-

ades to several millennia [10, 78, 85–88]. Generally,

humus contains plant- and animal-derived organic sub-

stances, microbial byproducts (e.g. extracellular enzymes

and lysed cell contents) and other substances, which

may be plant- and animal-derived organic substances that

were covalently linked with microbial byproducts by

enzymatic activities, i.e., newly biosynthesized compounds

[see 20].

Plant residues have diverse chemical composition and

therefore have different rate of decay in soil. Due to their

higher concentration of lignin, stems and roots decom-

pose 1.5 and 2.8 times slower than leaf residue [meta

analysis by Langley and Hungate 89]. In a field litter bag
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study, Katterer et al. [90] reported that the humification

coefficient of root-derived C (including rhizodeposits)

was 2.3 times higher than the same amount of above

ground residue C in the long-term (50 years) agricultural

land in Sweden cultivated with nine different grass and

leguminous annual crops. Studying humification of oak

and beech litter buried in field in temperate deciduous

forest in Japan, Ono et al. [91] observed that mass loss for

O-alkyl group (hemicellulose and cellulose) was 38 and

44% for oak and beech litter respectively, for aromatic

carbons (lignin and acid-soluble polyphenolics) it was

17–6%, for aliphatic carbons it was 20–10% while carbonyl

carbons (C=O containing organic substances such as

certain flavonoids, carbonyl-nicotinamide, etc.) were very

stable with only 2% mass loss during a 3-year period. The

chemistry of lignin determines its residence time in soil.

For example, lignin with higher guaiacyl:syringyl (G:S) or

guaiacyl:p-hydroxycinnamyl (G:H) lignin monomer ratio

degrades slower than the lignin with lower G:S or G:H

ratio [92–97].

Soil animals possess diverse organic substances in their

body tissues that have variable biochemical resistance

to decomposition in soil [e.g. 98]. Many soil arthropods

produce chitins, such as egg shells of soil fauna (e.g.

nematodes) that have chitinous layers, which are resistant

to decomposition compared to other animal-derived

organic substances (e.g. earthworm mucus) [99]. Earth-

worms secrete mucus to lubricate internal and external

body surfaces and facilitate their movement through soil.

In a microcosm-based incubation study with Octolasion

lacteum, incubated in soil obtained from a beechwood

forest on limestone from Northern Germany, Scheu

[100] found that the daily C loss from mucus secretion

from the body surface and in freshly-deposited casts was

0.2 and 0.5% of total animal C, respectively. Chen et al.

[101] reported that in 24 h time period, earthworms

produce 5.6mg mucus/g fresh weight biomass. Earthworm

mucus contributes to humification of plant residue. For

example, Bityutskii et al. [99] observed that addition of

earthworm mucus in fresh leaf tissue of Elytrigia repens

mixed with quartz sand caused 2.25mg C humification/g

plant tissue in 30 days of incubation while the control

soil (plant-sand mixture without mucus solution) had

1.57mg C humus/g plant tissue during the same period

(P< 0.05).

Microbial-derived organic substances constitute the

majority of stable SOC fraction, and the remainder is

undecomposed plant- and animal-derived organic sub-

stances [86, 102–106]. Simpson et al. [107] reported that

microbially derived organic matter was �45% of humin

fraction, >50% of the extractable SOC faction and

accounted for >80% of soil nitrogen in the 0–15 and

15–40 cm depth of brunisols from pine forest, native

prairie grasses, and mixed aspen-dominated forest, based

on NMR spectroscopy.

Microbial-derived extracellular secretions contain var-

ious types of lipids, polysaccharides, melanin, enzymes and

polyketides [e.g. 20, 98]. The longer residence time of

microbial-derived organic substances than plant or animal

residues in soil is due to (1) their strong bonding with

mineral complexes [e.g. 20, 108–111] and due to the fact

that (2) during the process of decomposition, microbial-

derived organic substances depolymerize and repoly-

merize with other decomposing organic substances

(e.g. plant derived polyphenolics) to produce stable bio-

molecules [e.g. 20, 58, 102]. Metadata analysis based on
13C tracer studies of SOC in surface horizons of 20 long-

term field experiments in temperate climates revealed

that the residence time of soil polysaccharides is

approximately 5–120 years, microbial-derived proteins

may persist �30–65 years, phospholipid fatty acids (PLFA)

of gram positive and gram negative bacteria and bacterial

hexosamines may last �5–75 years in soil [10]. Likewise,

based on pyrolysis-field ionization mass spectrometry

(Py-FIMS) analysis of soil, the putative polyketides as

aromatic, alkylaromatic, phenolics and lipid pyrolytic

products in humus are reported to have the residence

time >1000 years and represent the majority of SOM in

clay fractions [see 20]. The long residence time of

microbial-derived polyketides is attributed to their high

adsorption to inorganic colloids [see 20].

The size of SOC pool and the fraction of recalcitrant

organic substances are positively related [112]. Based on a

study of SOC turnover times in soil horizons of two

temperate agricultural lands and two temperate acid

forests, Lutzow et al. [112] concluded that the selective

preservation of recalcitrant organic substances from

active C pool (e.g. fresh root exudates, fresh plant resi-

dues, faunal and microbial residues and faunal feces) is

positively related to the SOC concentration, which is

consistent with other reports [113–116]; as well, a posi-

tive relationship between SOC, microbial‘ biomass and

humification is expected [114, 117]. In an 8-year field

experiment with conventional versus organic farming

system in cold-temperate climate, Marinari et al. [114]

reported that the soil from 5–20 cm depth of organic

farming system had 41% higher MBC, 36% higher humifi-

cation rate and 32% higher degree of humification as

compared to conventional farming. A review of the eco-

logical significance of humus in soil ecosystem services is

provided in Gul et al. [9].

Bioenergy Crops and their Influence on SOC

Dynamics

In this review, we focus on second generation bioenergy

crops and their influence on SOC dynamics as the resi-

dues of these crops are removed from field to be utilized

for bioenergy production. Several studies reviewed

potential lignocellulosic biomass sources for bioenergy,

considering the environmental impacts associated with

their cultivation, processing and use [e.g., 118]. These

crops include cereals, perennial grasses and trees.
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Annual Crops

The residues of annual crops such as corn, wheat, oat,

barley and rice are being used as a source of bioenergy

[e.g. 119–124]. Lal [5] reported the estimated annual

lignocellulosic residue production from cereal crops

for the world as 2800millionMg/year with 367 million

Mg/year in the US alone. The average annual crop stalk

production at Inner Mongolia Autonomous Region, China

is estimated to be increasing by 16.3% with corn stalk

accounts for 60% of corn production [125]. England has

the potential to produce 5.27Mt of cereal straw from

arable farms, 62% of which is currently used for bioenergy

and is equivalent to �1% petrol consumption demand per

annum [122].

Removing non-food residues from cereal crops will

generally have a negative effect on SOC levels in northern/

cold-temperate climates [6, 115, 126–128]. Blanco-Canqui

and lal [6] reported that the removal of 75% corn stover

caused 26% reduction in SOC amount in upper 0–2 cm

soil depth in silt loam soil in Coshocton Ohio over 212
years whereas in clay loam soil in Hoytville Ohio the

effect was non-significant. Using same field sites, they

[127] reported thatP25% corn stover removal from field

for 4 years reduced macroaggregates (>4.75mm) by

�40%. Using the AMG simulation model with data from

eight long-term agricultural fields in a cold-temperate

climate, Saffih-Hdadi and Mary [115] predicted that

straw removal would reduce SOC levels by 2.5 to 10.9%

SOC n after 50 years of those fields. Laird and Chang

[128] reported that removal of �90% of residues from

continuous maize (12 years) and continuous soybean

(7 years) fields near Rosemont Minnesota reduced the

organic C by 12% total N by 12.6%, cation exchange

capacity by 7.3%, total respiration by 12.3%, N miner-

alization potential by 27.7% and macroaggregation by 13%

in the 0–15 cm depth. Likewise the study based on residue

removal influence on SOC contents in 47 fields (grown

with annual crops) within Midwestern USA and Canada,

revealed a decline in SOC content by 0.5 to 32% in the

top 20 cm depth in 29 fields, depending on the degree of

residue removal, tillage practice, duration and fertilizer

application [129]. While these results almost universally

indicate a reduction in SOC content following the harvest

of non-food residues from cereal and grain-based crop-

ping systems, further study is warranted to evaluate the

influence of crop residue removal on SOC dynamics

(i.e. humification, microbial biomass/abundance, amount

of dissolve organic carbon and particulate organic

carbon).

Perennial Grasses

Perennial crops extensively investigated for bioenergy

production in northern temperate climates include

switchgrass (Panicum virgatum), miscanthus (Miscanthus

sp.), reed canarygrass (Phalaris arundinacea), alfalfa (Medi-

cago sativa) and giant reed (Arundo donax L.) [130–134].

Other species under consideration for bioenergy pro-

duction include bermudagrass (Cynodon dactylon), napier-

grass (Pennisetum purpureum), eastern gamagrass

(Tripsacum dactyloides), and prairie cordgrass (Spartina

pectinata) [131]. However, due to competition with food

crops and pastures for domestic animals, limited land is

available for the cultivation of dedicated bioenergy crops

[121]. In the United States, out of 182 million ha, only

30 million ha of land can be available for alternative use

[135]. In Europe, England, Ireland, Finland, Sweden,

Denmark and Italy are the major producers of dedicated

bioenergy crops using 19 000, 2905, 18 700, 13 865,

4285 ha of land respectively [136]. The native high-

diversity prairies can provide higher useable energy per

hectare as compared to soybean and corn [137, 138].

Tilman et al. [137] found a linear increase (84–238%) in

bioenergy production per ha plant harvest with increasing

number of native prairie plant species (2–16 species) than

in monocultures. Over 20 years of study in Midwestern

US states, Gelfand et al. [138] reported that the succes-

sional herbaceous vegetation (probably perennial prairie

vegetation), once established on marginal lands and ferti-

lized properly, has the capacity to produce 63+5GJ

of energy/ha as compared to 41+1GJ from no-till

corn–soybean–wheat rotation.

The energy output from perennial grasses is expected

to be much higher than that from annual crops. Data from

commercial farms in an agricultural region of western

Germany showed that net energy production by rape-

seed, maize and miscanthus was 66GJ/ha, 91GJ/ha and

254GJ/ha/year respectively, using the German Associa-

tion for Technology and Structures in Agriculture

(KTBL) online calculator to model diesel fuel consump-

tion of agricultural machinery Felten and Emmerling [139].

Moreover, the energy output:input ratio for miscanthus

was �10 times higher than rapeseed and �8.5 time

greater than maize. Angelini et al. [140] reported

�74% higher energy yield of A. donax than Miscanthus

during 9 years of cultivation in temperate climate of

central Italy.

Perennial grasses have considerable potential to sustain

or increase SOC reserves. Perennial grasses have higher

root:shoot ratio and more root distribution than annual

crops [e.g. 141, 142]. Zan et al. [141] reported 5 times

higher root biomass, �20% greater total biomass, and

�4–6 times greater root:shoot ratio of switchgrass as

compared to corn in grown in farms in southwestern

Quebec. Root exudation and fine root turnover con-

tribute to the pool of labile C substrates that can be

readily metabolized by soil microorganisms and either

used for metabolic processes or transformed into SOC

via humification. Compared to arable and bioenergy

annual crops, greater SOC sequestration is expected for

these perennial crops due to long root life, greater root

biomass and rhizodeposition [e.g., 133, 135, 143–148].
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Gelfand et al. [138] reported GHG mitigation potential of

well-established successional vegetation in Midwestern

US as 7851+46 g of CO2/m
2/year as compared to

7397+46 g of CO2/m
2/year for no-till corn–soybean–

wheat rotation. Likewise, in 10-year-old bioenergy crop-

ping systems, with corn, switchgrass and prairie in

Southern Wisconsin USA, Liang et al. [149] reported

�2 times lower microbial biomass (based on total

PLFA concentration) in soil under corn production as

compared to the prairie, while soil under switchgrass

had intermediate soil microbial biomass that was not

significantly different from that of corn and prairie soils.

Perennial grasses also prevent SOC loss through ero-

sion by providing year-round soil cover, which also

favours protection of the physically-bound SOC in

aggregates, since the soil is not tilled [134, 148, 150].

Other benefits of perennial grasses include lower N

leaching, due to the fact that perennial grasses typically

require less N fertilizer [see 151, 152] than annual crops

like corn (up to 200 kg N/ha/year according to Iowa State

University Agronomy Extension calculator using the

central Illinois dataset (http://extension.agron.iastate.edu/

soilfertility/nrate.aspx)). For instance, Smith et al. [153]

reported 83–89% lower N leaching from the soil

planted with switchgrass and prairie as compared to

corn–corn–soybean plots during second, third and fourth

years of growth (P< 0.05) while for miscanthus the N

leaching was 55 and 98% lower than annual crops during

that period. The fields grown with annual cereals received

approximately three times more fertilizer than the plots

grown with switchgrass. The lower leaching of N from

soils grown with perennial crops can also have a positive

role in the biomass production of bioenergy crops

[e.g. 154].

Table 3 summarizes the SOC sequestration potential

and greenhouse gas emissions from select bioenergy

crops, which varied due to soil type, initial soil conditions

and climate [e.g., 155]. Perennial grasses favour higher

microbial biomass, which could be important for con-

verting plant residue C into humus [e.g. 118, 147, 156].

Haney et al. [118] reported that 10-year-old mono-

cultures of switchgrass, sideoats grama, coastal bermu-

dagrass and buffalograss had 54, 70, 64 and 76% greater

SOC contents, respectively and 35, 59, 42 and 62% higher

MBC concentration, respectively, than a long-term corn

field (P< 0.05). They also observed significantly higher C

and N mineralization in soils under perennial grasses than

corn, which is interpreted to mean that cultivation of

perennial grasses favours the accumulation of a pool of

labile SOC that is physically protected from decomposi-

tion until the soil is sieved in preparation for C and N

mineralization in the laboratory. The effect of perennial

grasses on SOC pools, including microbial biomass and

soil fauna, is most noticeable when they are compared to

soils that are tilled for annual crop production. In con-

trast, Liang et al. [149] reported no influence on soil

microbial biomass of a 10-year-old stand of switchgrass

when compared to a mixed prairie in southern Wisconsin

USA. No difference in the abundance and number of

earthworm species was observed when comparing a

14-year-old miscanthus stand to uncultivated fallow and

grassland soils in Trier Germany [139].

Woody Crops

Short-rotation woody species, forest residues, and non-

renewable forest biomass, such as ‘disturbance’ wood are

considered to have a high potential to meet bioenergy

production needs in Canada [16]. Fast-growing woody

species investigated for bioenergy production include

Populus sp. and hybrids, Salix sp. and hybrids, and Pinus sp.

[157, 158]. In their evaluation of nutrient use efficiency

and SOC sequestration potential of woody crops,

Sochacki et al. [159] concluded that tree harvesting

strategies and nutrient management could be employed

(i.e. harvesting strategies that allow for the reapplication

of woody biomass wastes after processing, incorporation

of legumes) to improve SOC sequestration in the bioe-

nergy production system [159]. To reduce environmental

impacts associated with lignocellulosic biomass cultivation,

these potential bioenergy feedstock sources would ideally

exhibit high nutrient- and water-use efficiency and

requires low external inputs (fertilization, irrigation) [e.g.,

160].

Woody crops grown for bioenergy have a positive

influence on SOC content and soil aggregation as com-

pared to annual crops [e.g. 161–163]. This is due to the

absence of soil disturbance (no tillage) when trees are

grown and the greater root biomass of trees than annual

crops. Greater fungal:bacterial (F:B) ratio is reported for

bioenergy poplar and aspen as compared to annual crops

in cold-temperate climate [e.g. 162, 164]. Yannikos et al.

[164] reported �1.5–2.5 times greater F:B ratio in soils

under aspen and 7 and 14 years of short rotation of

coppice (SRC) system of hybrid poplar as compared to

alfalfa fields in Orthic Gray Luvisols in Saskatchewan,

Canada. They also reported higher contents of phenols,

lignin monomers and pentose and hexose carbohydrates

in the 0–10 cm of soil depth from coppice and aspen fields

than alfalfa fields. Rytter [165] estimated that the culti-

vation of bioenergy polar and willow in abandoned arable

lands in Sweden has the potential to sequester 0.4–0.5Mg

C/ha/year and can accumulate 9–10.3Mg C/ha in soil over

first 20–22 years. However, experimental measurements

do not necessarily support these predictions. Pacaldo

et al. [166] found no difference in SOC contents in soil

under 0, 5, 12, 14- and 19-year-old stands of shrub willow

biomass crops with almost the same planting density,

evaluated in the 0–15, 15–30 and 30–45 cm soil depths.

Dowell et al. [167] reported reduction in SOC contents

by 46% in the upper 0–12.5 cm depth after 5 years of

bioenergy poplar growth on a site that was previously a

permanent pasture. Compared to pastureland, bioenergy
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willow and poplar plantations in northern Michigan had

about �15 and 20 times higher losses of N (as NO3
7) and

lower root respiration during the first 2–3 years of the

plantation [168]. There are a few reasons why SOC gains

may not been observed when agricultural land is con-

verted for woody crop production: (1) land preparation,

including plough-down of pastures and land levelling,

can reduce the SOC content, (2) in the first year after

establishment, the C inputs from tree litterfall and fine

root turnover may be less than the annual C inputs of the

previous vegetation (especially if it was permanently

vegetated with grasses), (3) SOC accumulation is affected

by soil texture, and there is a finite SOC saturation

capacity depending on the mineral surface area where

SOC can be adsorbed [169, 170], (4) measurement of

SOC content in the top 15 to 45 cm may not capture C

inputs from tree roots that extend deeper in the soil

profile, and (5) SOC pool size (considering SOC content

and soil bulk density) is a more accurate way to evaluate

the SOC accrual in soil.

Genetically Modified Bioenergy Crops

Optimal traits for bioenergy production are well studied

for crops such as maize [171] and poplar [172], and there

are a range of traits, determined by major genes or

quantitative trait loci, that are researched using existing

genetic variations [173] or genetic modification (GM)

technologies [174]. Karp and Shield [175] assessed GM

traits for bioenergy crops, and identified three main

challenges in the context of sustainable production sys-

tems: (1) changing the ‘thermal time sensitivity to extend

the growing season’; (2) increasing aboveground biomass

without depleting belowground biomass; and (3) increas-

ing aboveground biomass without limiting water avail-

ability. The DOE Great Lakes Bioenergy Science Center

(GLBSC), led by the University of Wisconsin-Madison in

partnership with the Michigan State University, conduct

research to produce GM crops with high energy output

and high-level expression of target proteins . A major

focus is the development of synthetic enzyme mixtures to

evaluate the best enzymes and optimal enzymatic ratios

for efficient digestion of cellulose [176–178]. The core set

of enzymes under investigation includes endoglucanase,

b-glucosidase, cellobiohydrolase, b -glucosidase and

endoxylanase [178]. This initiative is an example of the

research efforts underway worldwide to improve the

conversion efficiency and energy output from bioenergy

crops.

Genetic modifications aim to achieve high production

of bioenergy per unit weight of crop residue by increasing

their conversion efficiency (i.e., the digestibility of the

lignocellulosic feedstock). These modifications involve:

(1) crossing over (2) reducing the concentration of lignin,

(3) reducing the G units in lignin, (4) reducing the degree

of polymerization of lignin, (5) introducing the amide and

ester interunit linkages in lignin polymers and (6) cellulase/

ligninase enzyme biosynthesis in plants [e.g. 123]. A

detailed account of these advancements for bioenergy

crops was provided by Hirasawa et al. [123]. In short,

many strains of miscanthus are developed by crossing

over the miscanthus species in European Miscanthus

Improvement Project [123]. Genetic modifications

regarding reducing the concentration of lignin in bio-

energy crops involve the down regulation of Cinnamoyl

CoA Reductase 1 (CCR1), Cinnamyl alcohol dehydro-

genase (CAD), Coniferaldehyde 5-hydroxylase (CAld5H),

Caffeoyl CoA 3-O-methyl transferase (CCOMT), Caffeic

acid O-methyl transferase (COMT), Populus tremuloides

4-coumarate:coenzyme A ligase (Pt4CL1), MYB61, MYB2,

MYB308 etc. [62, 123]. To decrease the polymerization of

lignin, a monolignol 4-O-methyl transferase is synthesized

by the substitutions of amino acid residue on the active

site of isoeugenol 4-O-methyl transferase enzyme [179].

This mutated enzyme methylates monolignol precursors

and therefore prevents laccases and peroxidases from

catalyzing their further synthesis into lignin polymers.

Another advance in bioenergy crops is the introduction of

easily hydrolysable amide and ester interunit linkages into

lignin polymers, which can be achieved by upregulation

of hydroxycinnamic acid amides [123].

Although these genetic modifications would eliminate

the need for extensive pre-treatment of the lignocellulosic

feedstock, they must be compatible with the phenotypes

and cultivars selected for field cultivation. Many of these

mutations reduce the growth and biomass accumulation

in herbaceous plants [see 62] while for trees, higher

growth rates or no influence of these mutations is

reported. For instance, an antisense inhibition of Pt4CL1

gene in Populus tremuloides caused enhanced leaf, stem

and root biomass, with 45% reduction in lignin and 15%

increase in cellulose content in the stem [180]. Likewise,

Leple et al. [181] found no difference in the growth of

transgenic poplar tree with CCR1 down regulation, which

reduces lignin deposition in the secondary cell wall.

Therefore, woody crops for bioenergy are likely the best

candidate for genetic modification.

Another novel advancement in improving the energy

output from bioenergy crops is the modification of var-

ious cellulase/ligninase enzymes in crop biomass. Such

modifications aimed to depolymerize the crop biomass

and ensure its fast hydrolysis to produce ethanol

[e.g. 182]. For example, Ziegler et al. [183] introduced the

catalytic domain of thermostable (Topt – 81 �C) endo-1,4-
b -D-glucanase from Acidothermuscellulolyticus bacteria in

Arabidopsis thaliana and tobacco (Nicotiana spp.) plants,

where it was expressed in leaves and in the apoplast of

BY-2 suspension cells, respectively. The authors also

reported that A. thaliana transformants accumulated as

much as 26% of total protein in leaves, meaning that

protein could be isolated more efficiently by separating

leaves from the feedstock. This enzyme had low activity at

ambient temperatures and optimum activity at 81 �C,
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which is lower than the usual temperature required for

lignocellulosic feedstock predigestion. It implies that such

modifications can reduce the cost of biomass hydrolysis

by reducing the demand of ligninase and cellulase enzymes

from microbial source, moreover; less energy will be

required to digest/hydrolyze biomass into ethanol. The

introduction of thermostable endo-1,4-b -D-glucanase in

bioenergy crops holds promise to greater yield of bio-

energy with lower cost and energy consumption.

From the perspective of feedstock conversion, there

are many advantages to reducing the lignin content in

bioenergy crops. However, lignin provides physical pro-

tection to cellular components of plants, slowing their

degradation in soil [38, 77], and also contributes to

the SOC as a complex polymer that can be bound to soil

surfaces and physically protected within aggregates, as

depicted in Figure 3. Unharvested residues with reduced/

modified lignin content are subject to faster rates of

decomposition [see 9, 36] and associated degradation of

soil quality [e.g. 9, 184].

Management Practices to Sustain Soil Organic

Carbon in Bioenergy Cropping System

Bioenergy cropping systems are predicated on the

assumption that most, if not all, of the aboveground bio-

mass will be removed from the system and converted to

bioenergy. The high level of residue removal is expected

to impact soil quality, as nutrient removal by grass-based

and woody crop species will nearly always exceed natu-

rally-occurring nutrient inputs due to the limited N2-fixing

ability of these crops. As depicted in Figure 4, this would

induce a negative feedback whereby soil microorganisms

will need to decompose the SOC reserves to sustain their

growth and metabolism. If microbial diversity and popu-

lation levels decline as a consequence of low residue C

inputs, other effects such as reduced resistance to

plant pathogens could occur. Management practices that

sustain or increase SOC content in bioenergy cropping

systems need to be adopted to avoid such negative

impacts.

Degree and Frequency of Residue Removal

The influence of residue removal the on SOC pool of

annual crops in cold-temperate climates depends on the

degree and duration of harvest, tillage system and appli-

cation of inorganic fertilizer [129]. Muth et al. [185]

estimated that the sustainable crop residue removal

of 26.5 million Mg/year in Iowa, USA could increase to

40 million Mg/year if no till systems were adopted. Like-

wise, a study conducted in fields in Chazy NY, Moebius-

Clune et al. [186] reported that >90% maize residue

harvest under no-till system had no significant effect on

total organic matter in the 0.5–6.6 cm soil depth, but

aggregate stability was reduced by 16%. Removing most of

the maize residue reduced SOC content �26% in plow

tillage than a no till system (P< 0.05). Similarly, Blanco-

Canqui and Lal [6, 127] found no influence on SOC

content in the 0–15 cm depth after 2.5 years in a no-till

system with 25% corn stover removal, but macroaggre-

gation declined by 40% after 4 years of these practices.

Figure 3 A general mechanism of plant residue transformation into stable SOC by microbial biomass.
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These studies and the findings of Campbell and Coxworth

[187] suggest that in regions with northern temperate

climate, under no till system, moderate residue harvest

of annual crops (O25%) may not significantly influence

SOC amount. Lemke et al. [188] predicted a 13% non-

significant reduction in the SOC content after 50% crop

residue removal from agricultural fields in Saskatchewan,

western Canada under fallow–wheat–wheat rotation and

no-till system since 1990, based on estimates from the

Introductory Carbon Balance Model (ICBM) and Camp-

bell model. They also found that the application of N

fertilizer to those fields where wheat straw was removed

continuously for 50 years increased the SOC pool

significantly, by 3Mg/ha.

The influence of residue removal on SOC contents in

perennial cropping systems may not be as severe as for

annual crops due to the fact that perennial crops have an

extensive root system and associated higher rhizodepo-

sition. However, the complete aboveground biomass

removal of perennial grasses in winter can reduce SOC

contents [e.g. 148]. For woody crops such as poplar and

willow in cold-temperate climates, frequency of harvest

ought to be considered to sustain SOC contents. More

frequent harvesting can result in more SOC depletion in

the 0–15 cm soil depth [e.g. 167, 189 and references

therein). Shibu et al. [189] proposed a 5-year interval

between harvests of SRC of poplar and willow bioenergy

crops in soils of Scotland, which have SOC contents

ranging from 110–360Mg/ha.

Habilitation of Marginal and Abandoned Lands

Considerable land is required to grow the lignocellulosic

feedstock to meet the demand of renewable energy. For

instance, in order to meet the target set by European

Union of increasing the renewable energy from 9% in

2010 to 20% in 2020 of total energy consumptions [190],

an estimated 17–21 million ha of additional land needs

to be converted to bioenergy crop production [191–193].

Likewise the US legislation has a mandate for 80 gigalitres

of ethanol production per annum from lignocellulosic feed

stock [194] to meet the�25% of liquid transportation fuel

need by 2050 [195]. The challenge is – where should these

bioenergy crops be grownwhilemaintaining SOCcontents?

Marginal and abandoned lands are the areas vulnerable

to erosion or have low productivity, therefore not suited

for food crops [138]. Cultivating lignocellulosic feedstocks

on these lands can increase the SOC content of soil.

Therefore, putting marginal and abandoned lands back

into production will offset the expected SOC depletion

in agricultural lands where non-food crop residues are

removed for second generation bioenergy production,

moreover will not compete with food production [e.g.

138]. Perennial bioenergy crops such as switchgrass and

the native successional herbaceous perennial vegetation

are adapted to grow in lands with high soil erodibility,

reduced fertility and water limitation [138, 156, 196–200].

Gelfand et al. [138] reported that native successional

herbaceous species established on marginal lands (more

Figure 4 Influence of crop residue removal on the stable SOC pool, considering the priming effect of rhizosphere microbial
communities on decomposition and nutrient mineralization required to meet their C, energy and nutrient demands. This
diagram is considered to depict the feedbacks in a cropping system with grass-based or woody plants that are under
minimal disturbance (e.g. no tillage) and have low nutrient inputs (e.g. no external fertilizer inputs, no legumes).
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than 11 million ha land in Midwestern US) would have

the capacity to fulfil �25% of 2022 biofuel production

mandate of US EISA 2007. They predicted same results if

switchgrass were grown on marginal lands in this region.

These estimates highlight the potential of marginal lands

to support perennial bioenergy crops for both energy

generation and GHG mitigation objectives, along with

providing other ecosystem services [138].

Organic and Inorganic Amendments

Organic fertilizers such as compost and animal manure

have considerable amount of C (�15%; [201]). Their

amendment to soil in cold-temperate climate is reported

to have a positive influence on SOC content including

microbial biomass [e.g. 202–206]. The application of these

fertilizers in bioenergy cropping systems can play a sub-

stantial role in sustaining SOC contents. For instance,

Thelen et al. [120] reported that in corn–soybean–corn

rotation system in East Lansing Michigan with >95% corn

residue removal, the application of composted dairy

manure and cattle feedlot manure at a rate of 22Mg/ha

mitigated the net global warming potential (GWP;

equivalent of CO2) by 7784 and 7934 g/m2/year, res-

pectively while the field without organic fertilizer had

GWP of 52 g/m2/year, suggesting a very high C seques-

tration by organic amendments. Likewise, Fronning et al.

[207] reported 25 and 41% increase in SOC contents

when manure and compost amendments were applied

for 3 years to corn–soybean–corn rotation system with

>95% corn residue removal, whereas control fields had

3% SOC reduction during the same period.

The effect of organic fertilizer on SOC contents in

short-rotation coppice (SRC) system in northern tem-

perate climate is also reported to be positive [208].

For instance, in response to the application of biosolid

compost to soil under willow coppice system at the

rate of 150 and 200 kg N/ha, Quaye and Volk [208]

found 25–38% increase in organic matter in the top 15 cm

of soil depth during first and second year of fertilizer

application. Johnson [210] reported the optimum N

fertilizer in SRC willow as 40, 60 and 100 kg N/ha after

first, second and third year of each 3-year cycle. However,

the author did not document the influence of N fertilizer

on SOC contents was not documented. The influence of

N fertilizer on SOC contents in SRC willow depends on

its initial status. For instance, Shibu et al. [189] reported

that in Scotland soils, the application of N fertilizer to

poplar and willow had a positive influence on SOC con-

tents in soils that had an initial SOC content less than

180Mg/ha in upper 0–10 cm depth, but soils with greater

initial SOC levels in the upper 0–10 cm depth did not gain

more SOC after the second and tenth harvest cycles.

Jung and Lal [209] reported linear increase of SOC

contents in upper 30 cm depth of soils under switchgrass,

in response to 50, 100 and 200 kg N/ha inorganic fertilizer

at two sites at the Ohio Agriculture Research and

Development Centre, for an overall gain of 17–21.5% in

SOC content.

Biochar

Biochar, a coproduct of biofuel production (e.g. fast

pyrolysis biofuels) that contains 45–91% C [211, 212], is

known to improve crop yield by enhancing physical,

chemical and biological properties of soil [e.g. 139, 201,

213, 214] and contributes directly to the SOC content

[121]. Biochar is considered a good strategy to increase

SOC contents of bioenergy cropping systems [211].

Kauffman et al. [215] stated that biochar-induced yield

improvement of second generation annual bioenergy

crops can range from 1 to 8% gains in the US Midwest,

and can sequester C via an indirect land use change credit

of between 1.65 and 14.79 t CO2 equivalent/ha/year over

the next 30 years.

The addition of biochar to the field along with organic

and/or inorganic fertilizers or composted biochar could

be a good management practice to enhance organic

matter as microbial (increased MBC) and non-microbial

source (added biochar, organic fertilizer and increased

input of crop underground residue e.g. 216, 217).

Omil et al. [221] reported that the addition of biochar +

P fertilizer to two soil types (i.e. sandy loam and clay

loam) of two Pinus radiata plantations enhanced �60 and

�53% MBC in clay loam soil after second and third year

of biochar + P application while in sandy loam soil during

third year of biochar + P application caused �33%

increase in MBC.

As the literature provides limited information at pre-

sent, further study is warranted on how biochar influ-

ences SOC contents, SOC pool dynamics and soil physical

properties (e.g. aggregation) in bioenergy cropping sys-

tems of northern temperate regions. Biochar may have a

positive influence on the growth of dedicated perennial

bioenergy crops situated on marginal and abandoned

lands, but this still needs to be determined. Moreover,

there is a need for research that evaluates the influence

of biochar with or without other organic amendments

on sustenance of SOC contents in GM bioenergy

cropping systems in northern temperate climate.

Biodiversity Management

Soil biodiversity is important in terms of maintaining

soil quality and sequestering SOC through the process of

humification [9]. Moreover, aboveground biodiversity is

positively related to belowground biodiversity [9]. Bio-

diversity in bioenergy cropping systems can be achieved

by crop rotation and growing polycultures (i.e. inter-

cropping with trees or other crops) rather than mono-

cultures [150, 198]. Perennial crops are considered to

have a positive influence on soil biodiversity via eliminating
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Figure 5 Influence of management practices on increasing SOC pool size in bioenergy cropping system; (a) tree-base
intercropping and crop rotation of bioenergy dicot and monocot crops without fertilizer application (b) tree-based inter-
cropping crop rotation of bioenergy dicot and monocot crops with biochar+inorganic or organic fertilizer application (c) tree-
based intercropping and mix cropping or crop rotation of non-bioenergy dicot and monocot crops with biochar+inorganic
or organic fertilizer application after bioenergy cropping.
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tillage, providing habitat to animals, for degrading organic

pollutants and having tighter nutrient recycling capacity,

which reduces nutrient loss to the environment

[150, 198]. Given that SOC content is positively related

with soil biodiversity [e.g. 9], the adoption of polycultures

for bioenergy cropping systems, as illustrated in Figure 5,

could be beneficial for maintaining SOC levels in cold-

temperate climate. Tilman et al. [137] reported that

over 10 years of experiment in Minnesota US, the net C

sequestration for the agriculture plots grown with mixed

native prairie vegetation grown on marginal lands was

2.7+0.29Mg/ha/year, while it was non-significant for

monoculture systems. The positive influence of mixed

prairie perennial vegetation on greater GHG mitigation

potential reported by Gelfand et al. [138] is mentioned

in section ‘Perennial grasses’.

Crop Rotations and Intercropping

As crop rotation positively influences SOC content in

cold-temperate climate [218], by sustaining/increasing

below ground biodiversity [9], it could be a management

practice to sustain the SOC content in bioenergy crop-

ping systems. However, this practice can be possible if

the demand of a farmer for grain and residue production

is not compromised. Moreover, as leguminous crops

have a positive influence on N contents in soil and in

microbial biomass [219], if their residues are not har-

vested, they can play a positive role in rebuilding soil

humus that was depleted by last year residue removal

[207] (Table 4).

Similarly, intercropping of cover crops (e.g. fescue,

Festuca eliato) can also play a positive role on sustaining

the SOC content [123] as they prevent leaching of

nutrients and soil erosion. Tolbert et al. [145] reported a

6% lower SOC contents in agricultural plots grown with

sweetgum without fescue cover crops in cold-temperate

climate regions in US. Likewise, a positive influence of tree

intercropping with annual crops on tree biomass pro-

duction is also documented. For instance, Rivest et al.

[220] reported �40% increase in leafless biomass of

hybrid poplars at third year of growth when intercropped

with cereal and legume crops in Southern Quebec

as compared to the poplars grown as monocultures.

A comprehensive description about the positive influence

of agroforestry on sustainable agriculture is provided by

Nair [212]. We expect greater belowground biomass of

plants in intercropping system, which in return can result

in greater SOC contents as compared to monocultures.

However, for the better yield of feedstock from annual

and woody bioenergy crops, the distance between cover

crops and bioenergy crops need to be taken into

consideration to overcome possible competition between

them [e.g. 213, 214].

Conclusions and Future Directions

Bioenergy cropping systems are expected to produce

aboveground biomass that is mostly removed for bio-

energy generation, which reduces the C inputs to soil and

over time will reduce the SOC pool size. Given the

importance of SOC for ecosystem functions, it is essential

to minimize or reverse this tendency. Management prac-

tices that conserve SOC vary with the type of bioenergy

crop produced. The SOC content in soil under annual

bioenergy crops may be maintained by controlling the

amount of residue removed, adopting no-tillage, applying

organic fertilizers and biochar, and including cover crops

in the rotation to minimize SOC loss through soil erosion

during the non-growing season period. Intercropping

systems, including tree-based intercropping, may be an

option in some areas. For perennial grasses, abandoned

and marginal lands are preferred to avoid displacing food

crops and offer a new opportunity for SOC sequestration

that can be enhanced with appropriate cultivar selection

and amendments of biochar and organic fertilizers. Like-

wise for woody crops, the possible management practice

to sustain SOC amount is to control the harvest fre-

quency and implement these cropping systems on mar-

ginal agricultural lands that have potential to sequester

SOC. While biochar and organic fertilizers could

be beneficial to boost SOC content in woody crop

Table 4 Expected reduction in greenhouse gas (GHG) emissions and gains from soil carbon (C) sequestration when
bioenergy crops are grown in cold-temperate regions

Bioenergy crop C3/C4
GHG emission reduction
(kg CO2/ha/yr)

Soil C sequestration
(kg C/ha/yr) Reference

Alfalfa C3 0.2–5.8 164–2500 [216, 218]
Switchgrass C4 0.2 800–1200 [216–218]
Miscanthus C4 0.2 682 [218]
Prairie cordgrass C4 0.2–5.8 164–245 [218]
Reed canarygrass C3 0.2–5.8 164–245 [218]
Low-input high diversity (LIHD) prairie C4 nd 1200 [137]
Willow C3 0.2–1.5 436–900 [216, 218]
Poplar C3 nd 1100 [160]

kg, kilogram; ha, hectare; yr, year; nd, not determined.
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production, research is needed to evaluate the amount

and type of these organic substances to be applied to

fields. The introduction of GM bioenergy crops such as

cellulase/ligninase enzyme production holds promise to

reduce the cost and energy of feedstock conversion,

required to achieve higher efficiency bioenergy produc-

tion. However, the influence of such GM bioenergy crops

on SOC dynamics during their life cycle and after harvest,

their influence on microbial community structure, and the

decomposition rate of non-harvested GM crop residues

under field conditions needs to be evaluated.
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